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Abstract

In this paper, we present a novel approach which allows combining super resolved imaging with extended depth of focus while the
result is obtained by all-optical means and no digital processing is required. The presented approach for the super resolved imaging
includes attaching a random pinhole array plate to the aperture plane of the imaging system. The energetic efficiency of the system is
high and it is much larger than an imaging through a single pinhole which also has extended depth of focus. The super resolving result
is obtained by mechanic scanning of the aperture plane with the random plate.
� 2007 Elsevier B.V. All rights reserved.

1. Introduction

Super resolution is a widely investigated field in which
spatial degrees of freedom are recovered by sacrificing
other dimensions as polarization, wavelength and time
[1–5]. Depth of focus is very important feature which is
in a way resembles longitudinal super resolution. The
meaning of it is the longitudinal range of positions at which
an object can sharply be imaged using an imaging module
[6–11]. A pinhole camera allows capturing images with infi-
nitely extended depth of focus [12]. Since instead of a lens a
pinhole is placed, this imaging system is lensless. However,
such a camera has no resolution and the energetic efficiency
is very low. This is due to the fact that the point spread
function (1/resolution) is proportional to kdi/D (where k
is the wavelength, D the aperture of the lens and di is the
distance between the lens and the detector), the depth of
focus to k(di/D)2 and the energetic efficiency to D2. Thus,
a pinhole that has small D has low resolution (large point
spread function) large depth of focus and low energetic effi-

ciency. A different approach for enlarging the depth of field
consists on using an annular aperture. This aperture pro-
duces an optical transfer function (OTF) which consists
on a large low amplitude plateau with a central spike at
zero frequency. This OTF remains essentially constant
against focus changes in the limit case where the width of
the annulus tends to zero [13,14].

In this paper, we propose to use the extended depth of
focus advantage that the lensless imager (a pinhole camera)
has but yet to improve its resolution and energetic effi-
ciency. The basic idea is simple. Let us use instead of one
pinhole a set of many pinholes randomly distributed along
the lens’ aperture plane. The aperture plane can be com-
posed out of holes (transmission/blocking function) or
even a random phase distribution as in a diffuser. We will
coin this filter that is placed in the aperture plane of the
imaging lens as: random plate. The random distribution is
such that at least half of the energy passes through (for
the case it is composed out of holes). Since the spatial dis-
tribution is random its autocorrelation (corresponding to
optical transfer function) is still similar to a delta function
as that of a single pinhole. Thus, this enables us to have
simultaneously energetic efficiency (of half instead of
almost a zero in the pinhole camera case) and extended
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depth of focus. However, the resolution is still, as for a
pinhole camera, low. In order to improve resolution we
use a proper replication of the amplitude (including the
random mask) at the system aperture that permits the sam-
pling of a single frequency of the image. Then we scan the
aperture plane with the random plate and time integrate
the intensity at the detector. As we are about to show, this
scanning generates super resolving imaging and allows the
establishment of simultaneously extended depth of focus,
high spatial resolution and energetically efficient image.
The super resolution is obtained in an all-optical manner
(no image processing is required). The super resolution
applied in the described approach can be categorized as
time multiplexing.

Section 2 describes the operation principle and its opti-
cal configuration. Numerical testing is presented in Section
3. The paper is concluded in Section 4.

2. Operation principle

Under paraxial approximation, the defocus can be mod-
eled as a quadratic phase factor over the pupil of the opti-
cal system [12]

bP ðx; yÞ ¼ Pðx; yÞ exp½iW mðx2 þ y2Þ� ð1Þ
where P represent the pupil function, bP stands for the gen-
eralized complex pupil function and Wm is a coefficient
expressing the amount of defocusing. The OTF is given
by the normalized autocorrelation of the generalized pupil
function. In this autocorrelation approach, the low con-
trast in a defocus system derives from the poor overlapping
between the generalized pupil and a shifted replica of it.
The purpose of the following derivation is to achieve an
OTF that will provide a high value for a given frequency.

For achieving this goal we propose the conceptual setup
that is depicted in Fig. 1a. We recall the generalized pupil
in Eq. (1) comes from the derivation of the impulse
response of the system; for a delta input the pupil results

illuminated with a spherical phase factor. We assume that
there is an element located at position (x0, y0), in the upper
right quadrant of the aperture, consisting of the random
plate. By some optical mechanism that we will explain
shortly we generate flipping that may have 4- or 2-folds.
For instance instead of the original distribution g(x 0, y 0)
we will generate spatial distribution of 0.5 · [g(x 0, y 0) +
g(�x 0, �y 0)] while g(x 0, y 0) is the multiplication of the qua-
dratic phase (spherical wave front) with the random plate
transmission function (see Fig. 1). Using similar optical
mechanism that generated 4-folds symmetry in the (x 0, y 0)
coordinates set, we will generate 4-fold symmetry in the
(x, y) coordinates set (see Fig. 1). Therefore, the distribu-
tion of 0.5 · [g(x 0,y 0) + g(�x 0, �y 0)] is replicated 4 times
around the origin in the (x, y) coordinates. The aim of this
mirroring is to maintain the desired orthogonality as is to
be explained next. The resulting distribution has symmetry
around the origin but also has a partial replication when
shifted by (2x0, 2y0).

Let us now write the explicit mathematical expressions
describing the four terms we have in the aperture plane.
First, following the notations presented in Fig. 1 we may
write that

x0 ¼ x� x0 y0 ¼ y � y0 ð2Þ

Denoting by E(x 0, y 0) the field generated just after the
upper right random plate when it is illuminated with a
spherical wave front (due to defocusing) function of
exp[iWm(x2 + y2)]

Eðx0;y0Þ ¼mðx0;y0Þ
2

� exp iW mððx0 þ x0Þ2þðy0 þ y0Þ
2Þ

� �
þmð�x0;�y0Þ

2
� exp iW mðð�x0 þ x0Þ2þð�y 0 þ y0Þ

2Þ
� �

ð3Þ

m(x 0, y 0) is the random plate. The two terms are due to the
2-folds symmetry we have mentioned first. We assume that
the random plate itself is also symmetric, i.e., m(x 0,
y 0) = m(�x 0, �y 0) and thus one obtains

Eðx0; y0Þ ¼ mðx0; y0Þ cos 2W mðx0x0 þ y 0y0Þð Þ

� exp iW mðx02 þ x2
0 þ y02 þ y2

0Þ
� �

ð4Þ

Following the effect of the two perpendicular mirrors (the 4
replications) one may obtain the total output

Etotðx; yÞ ¼ Eðx; yÞ þ Eð�x;�yÞ þ Eð�x; yÞ þ Eðx;�yÞ ð5Þ

The autocorrelation of the total field at the aperture, as gi-
ven by Eq. (5) gives the final OTF. Note that this fact can
be expressed as the calculation of the impulse response, as
the Fourier transform of the field at the aperture, intensity
conversion and then inverse Fourier transform.

Since m(x 0, y 0) is a random function, its autocorrelation
can be approximated by a delta functionZ 1

�1

Z 1

�1
mðx0; y0Þm�ðx0 � x00; y 0 � y 00Þdx0 dy 0 ¼ dðx00; y 00Þ ð6Þ

X’

Y’

X

Y

x0

y0
D

There is 4 folds symmetry 
flipping around axes (X’,Y’)

Random mask

Quadratic phase due to defocusing

Fig. 1. Schematic illustration of the aperture plane.
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and since the coefficients or the rest of the terms appearing
in Eq. (4) [in addition to m(x 0, y 0)] are also symmetric
around the axes (x 0, y 0) (i.e., around the center of the
random plate) they will even reinforce the sharpness of
the delta function in the autocorrelation operation of Etot

when cross-terms as E(�x, �y) and E(x, y), for instance,
are correlated. Thus, the overall result obtained after using
the relation of Eq. (5) in the autocorrelation expression of
Eq. (4) yieldsZ 1

�1

Z 1

�1
Etotðx; yÞE�totðx� x00; y � y 00Þdxdy

¼ dðx00; y00Þ þ dðx00 � x0; y00 � y0Þ þ dðx00 þ x0; y00 þ y0Þ
þ dðx00 � x0; y 00 þ y0Þ þ dðx00 þ x0; y00 � y0Þ ð7Þ

This result is obtained by autocorrelating Eq. (5) and
substituting it into Eq. (4) while assuming the relation of
Eq. (6). In abstract, aside of the DC term, the OTF permits
the recording of a given spatial frequency and its symmetric
terms (as given by the element position (x0, y0)) and, most
important, independently of the amount of defocus. The
folding of the complex distribution at the pupil plane
allows the setting of the central frequency that will pass
the system while the random plate makes a narrow band-
pass around the selected frequency.

Finally, we assume that there is a mechanical scan shift of
the element that allows the scan of the (x0, y0) position. The
scanning will fill the OTF of the system is a time sequential
manner. Note that this is a very interesting result that will
allow us to achieve our goal: super resolution and mostly
extended depth of focus while maintaining high energetic
efficiency. The spatial coordinates of the field in the aperture
plane as appearing in Eqs. (5) and (7) can be related to spa-
tial frequency by: x = kdimx and y = kdimy where k is the
wavelength, di is the distance between the aperture plane
and the detector and mx, my are the spatial frequencies in
the horizontal and the vertical axes, respectively [12].

Now let us discuss the optical mechanism for practical
realization of the 4- or 2-folds symmetry. In order to have
a practical solution we suggest the configuration described
in Fig. 2. The upper part of the figure shows the 3D struc-
ture of the optical setup for 4-folds symmetry while the
lower part shows its 2D cross-section which includes also
ray tracing. The simplified description is for the imaging
lens of our imager. The description is for the elements
positioned between the entrance and the exit pupils of the
imaging lens. At the entrance pupil of the imaging lens
we place the random mask. Attached to the lenses of the
setup a spatial light modulator (SLM1) is attached. This
SLM includes a realization of a diffractive lens with addi-
tional optical power. This diffractive element has two dif-
fraction orders of one and zero. The zero diffraction
order has no optical power and therefore the fixed lenses
having the focal length of F perform an imaging with mag-
nification of �1 between the entrance and the exit pupils
(inverted image). For the first diffraction order to the ele-
ment displayed on SLM1 is a lens with focal length of F.

The total focal length of two attached lenses each having
focal length of F equals to F/2 and therefore an imaging
of the entrance pupil (and the random mask that is placed
there) is obtained in the intermediate plane. SLM2 displays
a diffractive element equal to the one of SLM1 and there-
fore additional imaging is performed between the interme-
diate plane and the exit pupil. Therefore, since in regular
imaging the image is inverted, in double imaging the image
is the same (i.e., the magnification is 1) and if we denote by
g(x, y) the multiplication between the random mask placed
in the entrance pupil and the quadratic phase created there
due to defocusing, at the exit pupil one obtains g(x, y) +
g(�x, �y). By adding a linear phase factor [i.e.,
exp(2piax(t)x + 2piay(t)y)] to the function displayed in
SLM1 and SLM2 and varying its slope with time (i.e.,
ax(t) and ay(t) vary with time) will generate the spatial scan-
ning of the random aperture versus time. This will happen
since the SLMs are attached to the imaging lenses and
therefore their effect is as operating over the Fourier plane
(adding linear phase in the Fourier plane will shift the
image).

Note that the configuration proposed in Fig. 2 includes
four lenses. This is needed in order to create the 4-folded
symmetry around the optical axis of the entire imagining
system, as explained in Eq. (4). Obviously, the grating func-
tions that are displayed on the SLM and that generate the
spatial scanning are flipped between the four regions (each
region is corresponding to each one of the four lenses). This
is needed in order to have the 4-folded flipping symmetry
between the four terms of Eq. (4).

Note also that the same setup can be realized in reflec-
tion and then half of the elements are spared. In this
configuration the reflection mirror is placed in the interme-
diate plane of the imaging lens of Fig. 2.

Fig. 2. Practical realization of the proposed concept. Description of the
elements positioned between the entrance/exit pupils of the imaging lens.
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3. Numerical testing

The system of Fig. 2 was simulated and the results are
presented in Figs. 3–5. The amount of defocusing is mea-
sured as the maximal phase obtained at the edges of the
aperture. In our case

w ¼ W mD2

4
¼ pD2

4k
1

d i

þ 1

do

� 1

F

� �
ð8Þ

where do and di are the distances from the object or the im-
age to the aperture plane, respectively. D is the diameter of
the aperture. Wm is a coefficient that is related to the focus-

ing relation as seen from the right part of the equation. F is
the effective focal length of the imaging system to which we
attend to match the performance of our solution. In the
simulations the defocusing distortion was simulated for a
range of values of the parameter w. The range was from
zero (no spherical wave is generated on the aperture plane)
and up to large numbers as 25.

In Fig. 3, we present the reconstruction of a script
image. In Fig. 3a, we present the results obtained for
w = 10 while the proposed approach is applied. In
Fig. 3b, one may see the result obtained for the same w
and without applying the suggested approach. In Fig. 3c
and d, one may see the results obtained in focus (w = 0)
with and without the suggested approach, respectively. In
the simulations we assumed, as in the mathematical deriva-

Fig. 3. Simulated results for script. (a) The result obtained for w = 10 and
when the proposed approach is applied. (b) The result obtained for the
same w and without applying the suggested approach. (c) The results
obtained in focus (w = 0) with the suggested approach. (d) The results
obtained in focus (w = 0) without the suggested approach.

Fig. 4. As in Fig. 3 but for resolution target.

Fig. 5. As in Fig. 3 but for a face object.

Fig. 6. The width of three standard deviation of a point spread function
versus the amount of defocusing (the value of w).
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tion, that the random plate is attached to the aperture
plane of an imaging lens and thus a Fourier relation exists
between this plane and the detector. This assumption is
correct for any imaging system as well as for lensless ima-
ger, such as a pinhole camera, if the size of the pinhole and
the distance of the aperture plane from the detector justify
the far field approximation. Figs. 4 and 5 are the same as
Fig. 3 but for resolution target and face object used as an
input object, respectively. Note that the results presented
in Figs. 3–5 are all-optical and no image processing was
applied to further enhance them.

Fig. 6 presents the width of three standard deviations of
an intensity point spread function obtained in the image
plane versus the amount of defocusing (the value of w).
One may see that even for very strong defocusing of
w = 25 the standard deviation of the spatial point spread
function of the intensity remains only 1 pixel in units of
kdi/D.

4. Conclusions

In this paper, we have proposed an approach in which a
random plate and a folding system is attached to the aper-
ture plane of an imaging system. The plate is shifted
around the aperture plane while light is being integrated
by the detector. The obtained result is super resolved image
with almost infinite depth of focus and high energetic effi-
ciency of around half (for the case the random plate is
composed out of holes) for every image capturing (in com-

parison to a pinhole camera where a lensless imaging pro-
vides infinite depth of focus as well but zero energetic
efficiency and very low spatial resolution).
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